Twitter

Flipkart

Tuesday, January 19, 2016

WHAT IS GSM TECHNOLOGY

HOW THE GSM TECHNOLOGY / GSM WORKS

 

The basic GSM architecture is divided into different subsystem, It defines the different elements and it run the overall GSM ARCHITECTURE system perfectly.

The GSM network architecture well settled now but with the old system of this technology is backbone now so it used as the old ways.
on the other hand new system is developed but, the basic GSM system architecture has been maintained, and the GSM network architecture elements perform the operation as the original one 
-> The original GSM system was launched in the early 1990s
The GSM network architecture is divided into these subsystem,
  • Mobile station (MS)
  • Base-Station Subsystem (BSS)
  • Network and Switching Subsystem (NSS)
The main point is that the User is not aware about the background process and it doesn't matter because its a fast process
A block diagram of the overall GSM system architecture

Simplified GSM Network Architecture Diagram

Mobile station

Mobile stations (MS), mobile equipment (ME) or as they are most widely known, cell or mobile phones are the section of a GSM cellular network that the user sees and operates. In recent years their size has fallen dramatically while the level of functionality has greatly increased. A further advantage is that the time between charges has significantly increased.
There are a number of elements to the cell phone, although the two main elements are the main hardware and the SIM.
The hardware itself contains the main elements of the mobile phone including the display, case, battery, and the electronics used to generate the signal, and process the data receiver and to be transmitted. It also contains a number known as the International Mobile Equipment Identity (IMEI). This is installed in the phone at manufacture and "cannot" be changed. It is accessed by the network during registration to check whether the equipment has been reported as stolen.
The SIM or Subscriber Identity Module contains the information that provides the identity of the user to the network. It contains are variety of information including a number known as the International Mobile Subscriber Identity (IMSI).

Base Station Subsystem (BSS)

The Base Station Subsystem (BSS) section of the GSM network architecture that is fundamentally associated with communicating with the mobiles on the network. It consists of two elements:
  • Base Transceiver Station (BTS):   The BTS used in a GSM network comprises the radio transmitter receivers, and their associated antennas that transmit and receive to directly communicate with the mobiles. The BTS is the defining element for each cell. The BTS communicates with the mobiles and the interface between the two is known as the Um interface with its associated protocols.
  • Base Station Controller (BSC):   The BSC forms the next stage back into the GSM network. It controls a group of BTSs, and is often co-located with one of the BTSs in its group. It manages the radio resources and controls items such as handover within the group of BTSs, allocates channels and the like. It communicates with the BTSs over what is termed the Abis interface.

Network Switching Subsystem (NSS)

The GSM system architecture contains a variety of different elements, and is often termed the core network. It provides the main control and interfacing for the whole mobile network. The major elements within the core network include
  • Mobile Switching services Centre (MSC):   The main element within the core network area of the overall GSM network architecture is the Mobile switching Services Centre (MSC). The MSC acts like a normal switching node within a PSTN or ISDN, but also provides additional functionality to enable the requirements of a mobile user to be supported. These include registration, authentication, call location, inter-MSC handovers and call routing to a mobile subscriber. It also provides an interface to the PSTN so that calls can be routed from the mobile network to a phone connected to a landline. Interfaces to other MSCs are provided to enable calls to be made to mobiles on different networks.
  • Home Location Register (HLR):   This database contains all the administrative information about each subscriber along with their last known location. In this way, the GSM network is able to route calls to the relevant base station for the MS. When a user switches on their phone, the phone registers with the network and from this it is possible to determine which BTS it communicates with so that incoming calls can be routed appropriately. Even when the phone is not active (but switched on) it re-registers periodically to ensure that the network (HLR) is aware of its latest position. There is one HLR per network, although it may be distributed across various sub-centres to for operational reasons.
  • Visitor Location Register (VLR):   This contains selected information from the HLR that enables the selected services for the individual subscriber to be provided. The VLR can be implemented as a separate entity, but it is commonly realised as an integral part of the MSC, rather than a separate entity. In this way access is made faster and more convenient.
  • Equipment Identity Register (EIR):   The EIR is the entity that decides whether a given mobile equipment may be allowed onto the network. Each mobile equipment has a number known as the International Mobile Equipment Identity. This number, as mentioned above, is installed in the equipment and is checked by the network during registration. Dependent upon the information held in the EIR, the mobile may be allocated one of three states - allowed onto the network, barred access, or monitored in case its problems.
  • Authentication Centre (AuC):   The AuC is a protected database that contains the secret key also contained in the user's SIM card. It is used for authentication and for ciphering on the radio channel.
  • Gateway Mobile Switching Centre (GMSC):   The GMSC is the point to which a ME terminating call is initially routed, without any knowledge of the MS's location. The GMSC is thus in charge of obtaining the MSRN (Mobile Station Roaming Number) from the HLR based on the MSISDN (Mobile Station ISDN number, the "directory number" of a MS) and routing the call to the correct visited MSC. The "MSC" part of the term GMSC is misleading, since the gateway operation does not require any linking to an MSC.
  • SMS Gateway (SMS-G):   The SMS-G or SMS gateway is the term that is used to collectively describe the two Short Message Services Gateways defined in the GSM standards. The two gateways handle messages directed in different directions. The SMS-GMSC (Short Message Service Gateway Mobile Switching Centre) is for short messages being sent to an ME. The SMS-IWMSC (Short Message Service Inter-Working Mobile Switching Centre) is used for short messages originated with a mobile on that network. The SMS-GMSC role is similar to that of the GMSC, whereas the SMS-IWMSC provides a fixed access point to the Short Message Service Centre.

1 comments:

Post a Comment